RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College under University of Calcutta)

B.A./B.SC. FOURTH SEMESTER EXAMINATION, MAY 2015

SECOND YEAR

: 22/05/2015 **MATHEMATICS (Honours)** Date

Paper: IV : 11 am - 3 pm Full Marks: 100

[Use a separate Answer book for each group]

Group – A

Unit - I

[Answer any five questions]

1. a) Let $X = \{ \{x_n\} : x_n \in \mathbb{R} \ \forall \ n \in \mathbb{N} \}$. For any two points $x = \{x_n\}$ and $y = \{y_n\}$ of X define $d: X \times X \to \mathbb{R}$ by $d(x, y) = \begin{cases} 0, & \text{if } x = y \\ \frac{1}{\alpha(x, y)}, & \text{if } x \neq y \end{cases}$

where $\alpha(x,y) = \min\{n \in \mathbb{N} : x_n \neq y_n\}$. Show that (X,d) is a metric space.

[5]

[2]

[3]

b) Show that the set $\{0,1\}$ is a G_{δ} subset of \mathbb{R} .

2. a) Define a separable metric space. Prove that a separable metric space is 2nd countable. [5]

b) Let 'd' be a metric on \mathbb{N} . Is (\mathbb{N},d) 2^{nd} countable? Justify your answer.

[2]

3. a) Let X be a complete metric space. Prove that for any decreasing sequence {F_n} of nonempty closed sets in X with diam $(F_n) \to 0$ as $n \to \infty$, the set $\bigcap F_n$ contains exactly one point. [4]

b) In 3(a) if $\{F_n\}$ is a decreasing sequence of nonempty bounded closed sets but $\{diam(F_n)\}$ is not a null sequence do you think that $\bigcap_{n=1}^{\infty} F_n$ contains more than one point? Justify your answer. [3]

- 4. a) Let $X \subseteq \mathbb{R}$ be such that each continuous function $f: X \to \mathbb{R}$ is bounded. Show that X is compact. [4]
 - b) Let A, B be two disjoint closed sets in a metric space X. Construct a continuous function $f: X \to \mathbb{R}$ with $f(A) = \{0\}, f(B) = \{1\}.$ [3]

5. a) Let X be a metric space such that each continuous map $f: X \to \mathbb{R}$ be uniformly continuous. Show that X is complete. [4]

b) Let $f,g:X \to Y$ be two continuous maps, where X and Y are two metric spaces. Show that the set $\{x \in X : f(x) = g(x)\}$ is a closed set in X.

6. a) Show that if X is a sequentially compact metric space then every open cover of X has a Lebesgue number. [4]

- b) Test the uniform continuity of the function $f:(0,1)\to\mathbb{R}$ defined by $f(x)=\sqrt{x}$. [3]
- 7. Let $X = \{\{x_n\} | x_n \in \mathbb{R} \ \forall n \& \sum |x_n| < \infty\}$. For each $n \in \mathbb{N}$ define $\{e_n\} \in X$ such that nth term of the sequence $\{e_n\}$ is 1 and all other terms are zero. Consider $E = \{\{e_n\} \mid n \in \mathbb{N}\}$ and consider the metric

'd' defined on X by $d(\lbrace x_n \rbrace, \lbrace y_n \rbrace) = \sum_{n=1}^{\infty} |x_n - y_n|$. Show that

- a) E is closed and bounded subset of X. [4]
- b) Is E a compact subset of X? Justify your answer. [3]

- 8. a) Prove that a connected metric space with at least two distinct points is uncountable.
 - b) Let $f,g:[0,1] \rightarrow [0,1]$ be two continuous functions such that g(0) = 0 & g(1) = 1. Prove that there exists $x \in [0,1]$ such that f(x) = g(x).

[3]

[4]

[5]

[3]

Unit - II

[Answer any three questions]

- 9. Let $f_n:[0,1] \to \mathbb{R}$ be defined by $f_n(x) = \begin{cases} nx & : & 0 \le x \le \frac{1}{n} \\ 2-nx & : & \frac{1}{n} \le x \le \frac{2}{n} \\ 0 & : & \frac{2}{n} \le x \le 1 \end{cases}$
 - a) If the sequence of function $(f_n)_{n\geq 1}$ converges pointwise to a function f then find 'f'. [2]
 - b) Do your think that $(f_n)_{n\geq 1}$ converges to f uniformly? Justify your answer. [3]
- 10. In a power series $\sum_{n=0}^{\infty} a_n x^n$ be neither no where convergent nor every where convergent, then show that there exists a real number R(>0) such that the series converges absolutely for all x satisfying |x| < R and diverges for all x satisfying |x| > R.
- 11. a) Let $\{f_n\}$ be a sequence of functions converging uniformly on [a,c] and [c,b], where a<c
b. Then prove that $\{f_n\}$ converges uniformly on [a,b].
 - b) For each $n \in \mathbb{N}$, let $f_n(x) = \begin{cases} nx^2, & 0 \le x \le \frac{1}{n} \\ x, & \frac{1}{n} < x \le 1 \end{cases}$

Then show that $\{f_n\}$ is uniformly convergent on [0,1].

- 12. a) Prove that the series $\sum_{1}^{\infty} \frac{(-1)^{n-1} x^n}{n^p (1+x^n)}$ is uniformly convergent for all p > 0 on [0, 1].
 - b) Show that the series $\sum_{1}^{\infty} \frac{(-1)^{n+1}}{n+x^2}$ is uniformly convergent for all real x but not absolutely convergent for any real x. [2]
- 13. a) Find the radius of convergence of the following power series :

$$1 - \frac{2^2}{3^2} x + \frac{2^2 \cdot 4^2}{3^2 \cdot 5^2} x^2 - \frac{2^2 \cdot 4^2 \cdot 6^2}{3^2 \cdot 5^2 \cdot 7^2} x^3 + \dots$$
 [3]

b) If the radius of convergence of the power series $\sum_{n=0}^{\infty} a_n x^n$ is R then what the radius of convergence of the power series $\sum_{n=1}^{\infty} a_n^2 x^n$? Justify your answer. [2]

<u>Group – B</u>

Unit - I

[Answer any three questions]

- 14. a) Solve the equation $3x^2 \frac{d^2y}{dx^2} + (2+6x-6x^2)\frac{dy}{dx} 4y = 0$ by factorisation of operators. [4]
 - b) Find the eigen values λ_n and eigen functions $y_n(x)$ for the differential equation $y_n(x) = \frac{d^2y}{d^2y} + y_n(x) + \frac{dy}{dy} +$

$$x^{2} \frac{d^{2}y}{dx^{2}} + x \frac{dy}{dx} + \lambda y = 0, \ (\lambda > 0).$$
 [4]

- c) Use the convolution theorem to find $L^{-1}\left\{\frac{1}{(p+1)(p-2)}\right\}$. [2]
- 15. a) Solve $(1-x^2)\frac{d^2y}{dx^2} + x\frac{dy}{dx} y = x(1-x^2)$, given that y = x is a solution of its reduced equation. [5]
 - b) Apply Charpit's method to find the complete integral of the equation $(zp+x)^2 + (zq+x)^2 = 1$ where $p = \frac{\partial z}{\partial x}$, $q = \frac{\partial z}{\partial y}$. [5]
- 16. a) Show that the equation $(y^2 + z^2 x^2)dx 2xydy 2zxdz = 0$ is integrable. Solve the equation. [2+3]
 - b) Solve the equation $(x^2 + 1)\frac{d^2y}{dx^2} + x\frac{dy}{dx} xy = 0$ in series, near the point x = 0. [5]
- 17. a) Write down the conditions for existence of Laplace transform of a function F(t), $t \ge 0$. Cite an example to show that the conditions stated for existence are not necessary. [2+3]
 - b) Solve the simultaneous equation $\frac{dx}{x(y^2 z^2)} = \frac{dy}{y(z^2 x^2)} = \frac{dz}{z(x^2 y^2)}.$ [5]
- 18. a) Find the equation of the integral surface of the linear differential equation $2y(z-3)p + (2x-z)q = y(2x-3) \text{ which passes through the circle } x^2 + y^2 = 2x, z = 0 \,. \tag{5}$
 - b) Solve the differential equation $\frac{d^2y}{dt^2} 3\frac{dy}{dt} + 2y = 4e^{2t}$; y(0) = -3, y'(0) = 5, with the help of Laplace transform. [5]

Unit - II

[Answer <u>any four</u> questions]

- 19. a) Show that the pedal equation of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ with respect to a focus is $\frac{b^2}{p^2} = \frac{2a}{r} 1$. [3]
 - b) Test for the existence of asymptotes of the curve $y = x \frac{x^2 + a^2}{x^2 a^2}$. [2]
- 20. Find the asymptotes, if any, of the curve $y = 2\log \sec \left(\frac{x}{2}\right)$. [5]
- 21. a) Obtain the pedal of $\sqrt{\frac{x}{a}} + \sqrt{\frac{y}{b}} = 1$ with respect to the origin. [3]
 - b) Investigate the curve $y^2 x^4 + x^6 = 0$ for existence of double points.

[2]

- 22. Find the envelope of the curve $\sqrt{\frac{x}{a}} + \sqrt{\frac{y}{b}} = 1$ where ab = 1, 'a' and 'b' being variable parameters. [5]
- 23. Show that the radius of curvature of the curve $x = ae^{\theta}(\sin \theta \cos \theta)$, $y = ae^{\theta}(\sin \theta + \cos \theta)$ and its evolute at corresponding point are equal. [5]
- 24. a) Find the envelope of the lines $\frac{x}{\sqrt{\sin \theta}} + \frac{y}{\sqrt{\cos \theta}} = a$. [3]
 - b) Find the area of the region bounded by the curve y = x(x-1)(x-2) and the x-axis. [2]